Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease.

نویسندگان

  • Sunil Kumar
  • Anisha Mathur
  • Varsha Singh
  • Suchismita Nandy
  • Sunil Kumar Khare
  • Sangeeta Negi
چکیده

The aim of present work was to bioremediate the waste cooking oil using a novel lipase produced in solid medium containing waste grease and wheat bran by Penicillium chrysogenum. Enzyme extracted with phosphate buffer was purified 10.6 and 26.28-fold after 90% ammonium sulfate precipitation and ion-exchange chromatography, respectively. The partial characterization of enzyme revealed its K(m) and V(max) value for p-nitrophenolpamitate as 0.4mM and 47.61 U/ml, respectively. The relative molecular mass of lipase was 40 kDa by SDS-PAGE and confirmed by zymogram. Purified lipase was most stable at 40°C and at 8.0 pH. Lipase activity was enhanced by metal ions such as Mg(2+), Fe(2+), Ca(2+) and non-ionic surfactant TritonX-100, while suppressed in the presence of SDS. Crude lipase was applied on cooking oil waste and the acid value was 26.92 mg/g. This showed that the enzyme could be employed for the bioremediation of used cooking oil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation

The prime aim of the current work was to illustrate the components existing in repeatedly used cooking oil and to develop an economical process for the production of fatty acids from low cost feedstock waste. The waste cooking oil was characterized by the occurrence of high molecular weight hydrocarbons and polymerized derivative of esters. Triacontanoic acid methyl ester, 2,3,5,8-Tetramethylde...

متن کامل

Bioremediation of cooking oil waste using lipases from wastes

Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do...

متن کامل

Lipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil

In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...

متن کامل

A comparative study of immobilized lipase produced from Penicillium chrysogenum SNP5 on two different anionic carriers for its pH and thermostability

The present work aimed to increase the thermostability and pH stability of lipase produced from Penicillium chrysogenum SNP5 using different anionic carriers. The immobilized lipase from the fungus on 1.25% sodium alginate beads and 12% polyacrylamide beads retained 37.28 and 59.75% immobilization efficiency, respectively, on 3 mm bead size. Immobilized lipase on calcium alginate and polyacryla...

متن کامل

Biodiesel: A Cost-effective Fuel Using Waste Materials

The main disadvantage of biodiesel is its high price. The price of biodiesel depends on various factors such as the price of oil, methanol, catalyst, and labor. Among dif-ferent economic factors, oil accounts for the largest share of input costs of biodiesel production. In this study, first, suitable heterogeneous catalysts were identified for biodiesel production. Several studies were carried ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2012